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A3STRACT

This exposition presents a state—of—the—art survey of models and

algorithms for the convex cost network flow problem.
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I. INTROD U CTION

The C~O4ve.X C.O4~t ne,~iij o’~.k 0’f_ow p&ob&m may be easily described in terms

of a distribution problem over a directed graph (V , E ) ,  where V is the node

set and E is the arc set. The capacity of arc j is given by u
j~ 

and the

vector of all capacities is denoted by u. The decision variable X
j 
denotes

the flow in arc j and the vector of all flows is denoted by x. The convex

cost function associated with the flow in (V , E] is given by g (x). Nath—

ematically, the convex cost network flow problem may be stated as follows:

mi.n g(x) (1)

s.t. A x r  (2)

O < x < u , (3)

where A is a node—arc incidence matrix for [V , E ) ,  and r is the vector of

requirements. If r
1 

> 0, then node i is a supply node with supply equal

r~ . If r~ < 0, then node i is a demand node with demand equal —r
i
. Nodes

having r~ — 0 are transhipment nodes. We asstm~e that r0 
E~ r~ 

is zero,

in which case total supply equals total demand . If r0 < 0 , no feasible

solution exists. If r
0 

> 0 , we may place the problem in the prescribed

form by adding a d~. y  demand node having demand r0 and extra arcs from

each supply node to the di.mmiy node . In this case g( x) remains a function

of the original arc flows only .

The convex cost network flow problem is simply a specially structured

nonlinear program and may be solved with any of a host of techniques.

However , due to the underlying network structure, specializations of these

approaches have been developed. This exposition presents a sI=ary of the

best known applications of convex , cost network flow problems as well as a

unif icat ion of the algorithmic approaches available, for these prob lems .
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Our ob ject ives  have been to ( i)  hel p researchers  p lace the ir work in the proper

context with the exis t ing  l i te ra ture  and ( i i )  to help prac t i t ioners  in a lgor i thm
se lec t ion by presenting the algori thms avai lable in a uni form notat ion . Further-
more , impleme n t a t ion has bee n the unde r ly ing theme wh ich has gu ided our presenta t ion
of the algorithms .
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II. APPLICATIONS 
-

There are two basic types of problems which are modelled as convex

cost network flow problems , e.quJ2Lhiz~.wn pk obZein6 and pxodu Lon-dJ.4tt~bwtLon

pkObL2Jn6 . Equilibrit~ models appear in studies involving urban transporta-

tion systems , pipe network systems, and electrical network systems. A

s ary of the various models which have appeared in the literature follows.

Convex cos t ne twork flow problems may also arise as subproblems when using

penalty or barrier techniques on nonlinear programs having network constraints

as a proper subset of the constraint øet (e.g. see 3, 11, 33 , 41 , 49).

—3—



.l Equilibrium Flow Models

The equilibrium problem most widely studied by operations researchers

involves the distribution of t raff ic  in urban transportation networks . For

this type network the nodes represent zones or intersections of streets in

a metropolitan area while the arcs represent streets , expressways , toliways,

and so forth. The supplies and demands are given by the number of vehicles

which travel between zones during some period of time (for example the

morning rush hour) . This model differs from other models presented in this

exposition in that it has a multicoxnmodity nature . The commodities may be

viewed as either the flows between individual origin—destination pairs or

the flows from each origin to all its destinations . To minimize the number

of variables , t he latter approach is adopted here . Let the sources (comm-

odities) be indexed by l , . . . , p  and let x~ denote the flow of commodity k

on arc j .  L..~r ~~ht’ ~ i in~~t ion  f . ( z )  denote the trave l time for  each vehicle

on arc j when t h ~ t~~ta1 number of vehicles using arc j is z.

There are two basic models which have appeared in the transportation

literature corresponding to Wardrop ’s [44 ] two principles of t ra f f ic  flow .

The f i rs t  principle is stated as follows :

The jou rney times for all vehicles with the same or gin

and destination are equal and no greater than the j ourn ey

time which would be experienced by a single vehicle on

any unused route.

This is called the p~J nc.Lp!.e. o~ equaL .tiuwei tA~.me~ and is reflected in the

following model:
k

I ~k~
C
j

mm f . ( t ) d t  (4)

0
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k k
s.t. Ax = r , (all k) (5)

k 
> 0 , (all k) (6)

where is the vector of flows for commodity k and rk is the vector of

requirements for co odity k. It is assumed that f~ (t) for each j  is cont-

inuous and monotone increasing over t > 0. The continuity of f~ (t) guaran-

tees the existence of the integral while the assumption of a monotone in-

creasing function guarantees convexity (see Roberts and Varberg [37]). The

mode). (4) — (6) is generally called the equJLLh4iJ.Lm ~ ta~~Lc a.44Lg nzne.n.t pt obLe.ni

and its solution is often referred to as a user optimized flow pattern.

Charnes and Cooper [81 in 1961 were among the f i rs t  to present (4) — (6)

as a model of Wardrop ’s first principle. Since then a series of studies

directed toward developing e f f i c i en t  specialized algorithms for the

equilibrium traffic assignment problem have appeared in the literature

[17, 18, 24 , 26, 30, 35 , 36].  In addition Dafermo s [13 , 14] have extended

this model for two—way streets and multiple classes of users.

Wardrop ’s second principle called the p~~nc2pLe o~ oveitaf_L ~~n nt.~.za..tLoi~
may be stated as follows :

F~.ow6 a~te d4 - ~t~hw&d oveir. the alr.CA o~ -the p e~tJ~4Jo-4,k £n

4ucJt ~i mwtne.-~. -tha.t the .~wn c ~ -ttav~2 ~~ f l7€.4 60k aLt u.~

Ls ntij t1j n~zed .

The corresponding model is simply

k kmm . Z~ £~ (Z ~ Xj) ~~k 
X
j
)

s . t .  A x k 
— r~

C 
, (all k)

> 0 , (ail k).

The solution to this model is often referred to as a .6u~-teni optij ~~:ed ~Zow

pat tern. Jorgensen [26] was among the first to investigate this model . Other

equilibrium ~cde~~ related to traffic assignment may be found in [1. 18, ~3”j .
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The problem of finding steady—state flows and pressures in a pipe

network has been of interest to civil engineers and city planners for more

than forty years. In 1936 Hardy Cross [12] developed the first algorithm

for solving such problems. His procedure is simply an iterative method

for solving a system of nonlinear equations which describe the equilibrium

behavior of pipe networks. Recently Hall [20] and Collins et. al. [9]

discovered that this problem could be modelled as a convex cost network

flow problem. For this type network the nodes represent reservoirs and pipe

intersections while the arcs represent pumps, pipes , and valves of various

types. The model is simply

min z~ J X
j f~ (t) dt (7)

0

s.t. Ax = r (8)

x > 0, (9)

where for pipes, pumps, and valves, f.(t) denotes the head loss (pressure

drop) in arc j as a function of flow in arc j and for  art if icial  pipes

connecting the ground to a reservoir , f~ (t) is a constant. The decision

variable X
j 

is the flow in arc j in units of volume per unit time. As

bef ore f~ (t) is assumed to be continuous and monotone increasing.

The problem of finding the steady—state currents and voltages for a

nonlinear resistive electrical network may also be modelled as a convex cost

network flow problem [7 , 10, 16, 23]. For this type network, nodes represent

points of connection while arcs represent the various electrical components.

The model is identical to (7) — (9) where for all components except voltage

sources , f~ (t) denotes the voltage drop across the element represented by

arc j as a function of current flow in arc j. For voltage sources which

are connected to the ground by arc j, f~ (t) is a constant. The decision

—6—
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variable denotes the current in arc i. Each f~ (t) is assumed to be both

continuous and monotone increasing.

We note that both the pipe network model and the electrical network

model each have special structure which can be exploited in developing

solution techniques. Even though the particular cost functions used differ,

both are separable and convex. Hence, we conjecture that an algorithm which

proves to be effective for one of these models should also work well on

the other model.

L ~~ V ________
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2.2 Production—Distribution Models

Dis tr ibution problems in wh ich demands are given by random variables

rather than by known constants may be modelled as convex cost network flow

problems . Let DC V denote the destinations whose demands are random

variables. Then the requirements f o r  k E D are random variables. Let

for all k e D denote the density functions corresponding to these

random variables. Further , let hk denote the unit holding cost and Sk 
denote

the unit shortage cost at destination k. Then the objective is to choose

amounts to be shipped in order to minimize the shipping cost plus the expected

holding and shortage costs. Mathematically this problem may be stated as

follows :

mm :
j ~~~E ~ + E k D  hk j (Ir k ! — t ) f k ( t ) dt  +

krD 
S
k J (t  — r

k!) 
f
k
(t)dt

Ir k!

s.t. A x r

0 < x < U .

Note that for the demand nodes , the requirements are variables rather than

constants. That is , Ir k ! for all k ~ D represents the total amount shipped

into node k to meet its unknown demand. Problems of this class were first

suggested by Dantzig [15]. Special procedures for models of this type may

be found in {ll , 32].

Distribution problems for which the demands are known constants but in

which some of the supplies at the production facilities are unknown may also

be modelled as convex cost network flow problems. The basic underlying idea

is that production facilities can increase their capacities by any of a series

increasingly expensive additions of equipment and services. For this ty p e

—8—



nodel sane o~ the requirements , rk~ 
are decision variables . Let f. (r.)

denote the total production cost at facility k for a produc t ion  leve l of

of rk . Then we obtain the following model :

m.in Z~ c4x1 
+ Z

k
f
k

(r
k
)

s.t. Ax — r

0 < x  < u.

Algorithms for models of this type have been developed by Sharp et. al. [40],

and LeBlanc and Cooper [31].

A convex cost network flow model has recently been proposed by Rosenthal

[39] to study multireservoir water release scheduling for the Tennessee

Valley Authority. The objective is to maximize the benefit of hydroelectric

power. This benefit function reflects the savings of thermal fuels that result

from using hydroelectric power. For this model the nodes represent reservoirs

at a given time period to a different reservoir at a later time period or (ii)

a reservoir connected to itself at a later time period. One type of arc allows

for the release of water while the other allows water to be stored.

— 0- .



III. ALGOR 1T}~1S

There are basically two types of algorithms which have been proposed

for solving the convex co s t network flow problem , ~~~~~~~~~~~~ tne~thod5 and

~e i .b~e cLL’tec~tJ.on rnethocLs . Approximation methods use a piece—wise l inear

approximation for g(x) and solve the resulting linear network flow problem .

Feasible direction methods , however , work directly with the nonlinear cost

function g(x). Let y denote a feasible point for (1) — (3). We define a

d e c ~t~on to be any nonzero vector . A direction d is said to be a ~~~~~SVL b~~e

dL~tec~tLort at y if y + Xd is feasible for some X > 0. A direction d is said

to be an J anpiwv-Lng 4~Lb~~ dJ ~ ec_t-Lon if d is a feasible direction and the

directional derivative of g in the direction d at the point y is negative.

Given the above definitions , the feasible direction algorithm may be described

as follows :

ALG- 1: FEASISLE VIRECTIO~1 ALGORITHM

0. ~~~~~~~~~~~~~
Let y

0 
be any feasible point , let c > 0 be a termination tolerance ,

and set k -- O.

1. F~iizd A~t Imp wuiii~ FecA-Lbf~ Vi ec t~on

Let d be an improving feasible direction at

2. L-&te Sea~ch
*Find cz such that

+ = mm 
~~~~~ + id): A (y + ad) r, 0 < y + Ld < U

— k —

Set :~
..÷l ~

‘k + ~*d and k k+l. If 
~(Y~~1) 

— g(Y~) < 
~ t e r m i n a t e;

otherwise , go to 1.
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The major difficulty with the above algorithm is the determination of

an appropriate direction finding program for step 1. The various methods

differ in the means for finding d. However, all the methods presented in

this exposition make use of the directional derivative. Recall that the

directional derivative of g(x) at y in the direction d with Euclidean norm

Id ! is given by

r dl
g L~ 

+ t — g(y )
D g (y) Urn I I

t

providing the limit exists [28]. A more computationaily useful form of the

directional derivative is given by

Vg (y)d
D
dg

(y )  = ________

I d~
where Vg(y) is the gradient ef g evaluated at y.

Since D~g(y) < 0 whenever \lg (y) d < 0, Vg(y)d is the expression used in all

feasible direction methods for the selection of an improving direction.

The particular type of line search used in step 2 usually depends

on whether or not g is differentiable. If g is differentiable and the deriva-

tives are easily calculated , then a 5 4e.c21_ akt 4~.aJtcJt [3 , 33, 49] is usually

used; otherwise, either a go~.r&n ~tA..on or Fi...bonac..c1 4 Q.a~’tc.h [3 , 33, 41, 49]

is used .

—11—
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3.1 Piece—Wise Linear Approximation

In order to simplify the presentation we assume that g(x) is separable ,

i.e. g(x) 
~ 

g~(x .). Suppose K linear segments are to be used in the

approximation. Then the interval [0, u~ J is partitioned into K segments

each of length u~ for k = 1,...,, K, such that uj 
= E

k u~. Let v~ denote the

right end point for the pth segment. That 1S , V1~ = ~~~ ~
k
. Let x~ denote the

flow in segmen t k of arc j with unit cost of ~
k
. Then x = E x~.j j kj

k
Substituting x • ~ x~ into (1) — (3) yields

j k j

k k
miii E c x .j,k j j

St

0 < k 
< 

k 
, (all k)

where is a vector of all flows for the kth segment and uk is a vector of

bounds for the kth segment. There are numerous techniques [7, 9, 10] which

may be applied to determine the unit costs, c~ . An extension of the idea

of least squares has been used in [9, 10]. To apply this approach we define

k k k k-lh~(x~) = Pj + c~ (X
j 

— v~ 
)

for the interval V~~~<x . < v’~, where v? = 0. Then c~ is selected as the3 3
value which minimizes

k

[g~ (t) 
- h~ (t)}

2
dt . 

k k-i k-For the first segment , p = g (0) and for all other segments p . = h . (v . 
1
)j  j  3 3 3

The formula which y ields this minimization may be found in p10].

—12—
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3.2 Frank—Wolfe Method

Iii 1956 Frank and Wolfe 119] proposed a method for solving

nonlinear programs having a convex differentiable cost function and linear

constraints. Given a feasible point at iteration k for (1) — (3), say

one finds another feasible point, say Z
k~ 

by solving the linear network

flow problem miii {Vg(y~)x : Ax r, 0 < x < u}. As a by—prodoct of

the solution of the linear network problem, one gets a lower bound .

Consider the following proposition :

Proposition 1.

Let ~ denote an optimum for (1) 
— (3) and let y be any feasible point

for (1) — (3). Let z solve the linear program miii P75(y)x : Ax r , 0 < x < u}.

Then g(~) > g(y) + ~7g(y).(z 
— y).

Proof. By Theorem 4 page 72 of [29] we have g(~) > g(y) + Vg(y).(~ — y).

Then g(~) > g (y) + Vg (y)~ — Vg(y)y. But Vg (y)~ > Vg(y )z .  The re fo re ,

g(~ ) g(y)  + ~‘g(y) a — 
~7g(y)y g(y) + Vg( y) .(z  - y).

u sing the lower bound provided by the above proposition , the Frank—Wolfe

algorithm may be stated as follows:

ALG -Z: FRANK-WO L FE ALC~ORITH~.1

0. In.~~~LLza.t.Lon

Let y
0 
be any feasible solution. Set k ~ 0, initialize the lower bound

—
~~~~, and choose the termination parameter ~ > 0.

1. SoLve. We~~oith Su.bplz.obLQ.m, Upda~te. Sou.nd , Cke.cfz Foit T~ .m~nizti.on

Let z denote the solution to mm {Vg(y~ )x : Ax — r, 0 < x < u}.

Set 3~ - m a x  ~3 , ~ (Y~ ) + Vg(y~~) ( z  — 

~~~~ 
If 

~~~~~ 
— 

~~ 

C ,

terminate with as an c-optimum ; otherwise , k ~ k +1.

— 13—
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2. Line. Seivtcit

Let be the point on the line segment between and a having

smallest objective function value and go to 1.

it is well—known that the convergence rate of this procedure slows sub-

stantially as the optimum is approached [9, 17, 18, 32, 35]. Several modifi-

cations of the basic algorithm have been proposed to enhance the computational

effectiveness of this procedure . These are designed to avoid the zigzag

character frequently exhibited by this procedure . Figure 1 illustrates

this phenomenon .

Figure 1 About Here

The method of parallel tangents (PARTAN ) [33] integrates movements in

the direction 
~~k~~~ k—’~ 

along with the basic Frank—Wolfe steps. The algorithm

is given below.

ALG -3: FRA NK-WOLFE ALGOR i THM WITH PARTAN

0. ~~~~~~~~~~~~~

(same as ALG—2)

1. SoLve Ne.~tj ~vonJz Sub p’r.ob&m, Llpd a2e. Bound, Ch.e.cfz Fcrn. Te,~un.Lna~tLon

(same as ALG—2)

2. L~ine. SetvtcJt

Let w be the point on the line segment between 
~k—l 

and z having

smallest objective function value. If k = 1, 
~k 

4- w , and go to 1.

—14—



3. PARTrW S~t~.p

Let be the feasible point having smallest objective function value

on the half ray from 
~k 2  through w, and go to 1.

Figure 2 illustrates the Frank—Wolfe method using PARTAN .

Figure 2 Abou t Here

In 1970 Wolfe [47] presented a modification of the Frank—Wolfe

algorithm which incorporated what is called awa.y 4~tep4. The modified

algorithm is described below. 
-

ALG-3: FRANK- WOLFE ALGORITHM WiTh AWAY STEPS

0. Z nLtLaL-LzatLan

(same as ALG—2)

1. FA.nd Towaxd S.tep Vi ec~tLoj ’t , UpdaJe Sound , Ch.e.ciz Fair. Te.n.m.Lna,t~on

(same as ALG—2 with k 4- k + 1 deleted)

2. Au~zy S.tep Vttec..ti..ort

Let w denote the solution to

max {Vg(yk
)x : Ax — r, 0 < x < u, X

j 
— 0 if 

~~~~ 
— o}

Set d 2 4
~
y
k
_ w.

3. FLnd Ma2 Moveme.~vt lit Ai~zy VJjr.ec.tLon

Let c&2 denote the solution to

max Cii : A( w + ctd2) r , 0 < w + nd2 < u}.
ct > O

If c&2 < 1 , go to 5.

4. SQILC..t Vjj tect.Lo~t

If l7g~~k
)zt ~~ I’7g(y~)w! , go to 5; otherwise , go to 6.

—15—
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5. Line. SwJr.cJr. (U~tPL To~vajr.d VVL’r.ectLobl.

Let be the po int on the line segment between and z having

smallest objective value . Set k ~
- k + 1 and go to 1.

6. Une. Sea.’r. ch W~WL Awa.ti VL’r.ec.VtLan

*Let ii deno te the solution to

miii 
~~~~ 

+ iid2)}. Set k 4- k + 1, 
~~~ ~k-1 

+

l < c L < i i2

and go to 1.

The Frank—Wolfe method using away steps is illustrated in Figure 3.

Figure 3 About Here

Holloway [221 proposed a different extension of the Frank—Wolfe

method . This extension requires that y
0 

and each z produced in step

1 of ALG—2 be saved. Suppose that after k passes through step I

that these solutions are denoted z
O
,...,Zk_l . Then Holloway suggests

that the line search of step 2 ALG—2 be replaced by the following

problem ,

i=k—1mm g(y A + Z z.ct.)0 i—0 ii

s.t. X + E 1 c&~ = 1 (10)

> 0, (all i).

Letting X ,ct1 
for I — 0,... ,k—l . denote the solution to (10),

then y 4- A *y0 
+ :: .

—16—



The computational experimentation as represented by [17, 22 , 32]

using both the away steps and Holloway ’s extension on different classes

of problems is inconclusive . These extensions have been of benefit on

some classes of problems but have slowed computational times for

others.

— 17—
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3.3 Zou tendijk’s ~!ethod of Feasible Directions

In this section we present a specialization of the work of Zoutendijk [50]

to the convex cost network flow problem , (1) — (3). We assume that g(x) is

differentiable over Cx : 0 < x < u }. Given a feasible point y ,  any f easible

direction d must satisfy A(y + c~d) = r for some a > 0. Clearly, for (1) — (3)

any feasible direction d must have Ad 0. Furthermore ,

> 0, for all i such that = 0 and ;

d . < 0, for all j such that y. = u..
-j 3 3

Then an appr opr iate direction finding program is the following :

mm Vg(y)d (II)

s.t. Ad = 0 (12)

d. > 0, for all j such that y. = 0 ; (13)

d~ < 0, for all j such that y. — u .; (14)

V I d i = 1. (15)

Due to the nonlinear constraint (15), (11) — (15) is difficult to solve .

Hence a relaxation of (ii) — (22) where (15) is replaced by

—l < a < 1,

is usually so lved. The relaxed problem is simply a linear network flow

problem . If an improving feasible direction for (ii) — (15) exists , then

an optimum solution to the relaxed problem will be an improving feasible

direction although not necessarily the best local direct ion .

—18—
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Beale [4] was the f i r s t  to a?ply a feasible direction algorithm (similar

to that described, by Zoutendijk) to the convex cost network flow problem. How-

ever, this work was designed for a bipartite structure. Furthermore, the partial

derivatives are approximated and the flows are always changed by a single

t~~it. This approach does not require that g(x) be differentiable , it avoids

the need for a line search , and it is applicable to integer as well as

continuous problems. Extensions of this algorithm to an arbitrary network

have been given by Hu [23]~~ nd Klein [27]. Other similar approaches_ may be

found in [34] and [45].

L 

-19- 
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3.4 Rosen s Gradient Pro~oction Method

The gradient projection method [38] is motivated by a desire to implement

the feasible direction philosophy while not requiring the solution of a linear

program at each iteration . The strategy employed is to move, if possible, in

an improving feasible direction , derived from the negative gradient, so that all

active (currently binding) constraints remain active. The negative gradient

is proj ected onto a subspace of the feasible region which insures that all

active constraints remain active. If the projection is a non—zero vector , it

will lie along an improving feasible direction. If the projection is the z ero

vector, then either optimality can be verified or one attempts to find an

improving feasible direction for which one or more binding constraints become

non—bin ding. The procedure guarantees that either an improving feasible direc-

tion can be found or optimality can be verified . For the convex cost network

flow problem , the equality constraints ( 2 )  are always active ; whereas , the in-

equality constraints (3) may be either active or inactive at any given step.

Given a feasible point y,  the subepace tan gent to the active constraints

is given by the set M = Cd : Ad 0, d~ 0 if y
j 

= 0 or Yj 
= u

j
}. It is

well—known that one row of A is redundant [2], and that A has rank equal to

the number of rows less one. Let A denote the A matrix with one row deleted.

Let F = : Yj 
= 0 or = u~} and let k denote the order of r. Let

A

e

A-
e~

e
k

—20—
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where j. c r for 1 , . . .  , k , and e. is a column vector with a one in position
1 i i

j. and zeroes elsewhere . We assume tha t  A has fu l l  row rank and we let M =

{d: Ad 0}. A subspace orthogonal to M is defined by N = {h = A i i  : ii £

whe r e p is the row dimension of A ( i . e .  the number of nodes + k minus 1) .

The following proposition proves that M and N are orthogonal .

Proposition 2.

M and N are orthogonal.

Proof. Let d £ H and let h C N. Then h can be represented as h A i i  for

some ii ~ Er’ . Then d h  — d A c L  = (Ad) ’ii = 0.

Then any vector in En , can be represented by d + h where d c M and 
V~~~~~~~~ -

h c N. In particular , the negative of the gradient can be represented this

way . That is —Vg (y) d + A c z  for some ii ~ E~~. But Ad = —AVg(y )  — A A c x  = 0

implies ii — — (A A ) 1 AV g (Y) . Since A has full row rank the existence of

(A A ) ~~ is guaranteed [5].

Therefore d — —Vg(y) + A(A A ) ’ A Vg (y)
= ~~I - ~~(X ~~)-l A )Vg(y).

Letting P = ( I  — A (A ~~~ ~ 
) we have

d — — PVg(y),

where P is called the projection matrix. That is, Px for any vector x

is the projection of x on the subspace M. The following proposition proves

that d — PVg(y) is an improving feasible direction , when d ~ 0.

Proposition 3.

Vg(y)d < 0, where d a — P~Yg (y )  ~ 0.

Proof. ~7g(y)d — (Vg(y) + d — d]d a [V g(y) + d]d — dd. But Vg(y) + d is

orthogonal to d. Hence ‘7g(y)d —dd < 0 for d ~ 0.

If —PVg (y) — 0, then ei..her optimality may be verified , or one seeks

an improving feasible direction by allowing movement of the variables corres-

ponding to active constraints from (3). Verification of optimality requires

straight—forward Kuhn—Tucker analysis, the details of which may be found in

— 21—
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[33]. When —P7g(y) = 0 and a variable for which movement is to be allowed

is identified , the corresponding row of (3) is removed from A. This gives

rise to a new projection matrix P and a newly projected vector —P7g(v). This

process continues until either an improving feasible direction is obtained

or optimality is verified.

A major part of the computational burden of the gradient projection method

involves recomputing the projection matrix when A chang’s. However, A A~ is

a symmetric matrix and specialized inversion techniques and data structures

may be used to maintain (A A )~~ . Furthermore , all changes in A A~ may be

accomplished by adding or deleting a single row from A. Hence changes in

(A A ) ~~ may be obtained by a simple updatin g scheme which may be applied

several times each iteration. These updating procedures are specializations

of the following proposition .

Proposition 4.

Consider the partitioned matrices

[A 1 
A
21 rBl B

21
A = L;:t~;i 

and B =

where B A ’, and A1
1 and B

4
1 are assumed to exist. Then

— A
1
1 + A

1
1 

A
2 Q~

1 A3 
A
1
1
,

B
2 

- -A1
1 A2 Q

1
,

B
3 

— —Q
1 
A3 

A
1
1
,

B4 -Q ~~,

where Q (A4 
— A3A1~~ A 2 ) ;  and

A 
— 

= B - B B , 1
B1 1 2 4  3

A proof of Proposition 4 may be found in [6].
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Suppose that a row , say e , is to be added to A. Let ~\,,. = [A

l e
I S

Then
A A ~~~ Ae 

1
S

Then by Proposition 4 ,

(~ ~~)~~ + q (A A ) 1 Ae
5
e ~~ (A A ) 1 -q (A Ae

- (16)

—q e A~ (AA
’)1 q

wher e 1

1 — e A (A A ) 1 Ae

Suppose that the last row , say e , is to be removed from A. That is

l e
L S

Let [a qJ denote the last row of (A A ) ~~~. Then

* I

( A A ) 1 
-

a I q

Then by Proposition 4 ,

(A~ A ) 1 A — [ 
~

j aa ’ . ( 17)

—2 3—
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Of course , if the row to be deleted is not the last , (AA ’) 1 is transformed

by interchanging both the last row with the one to be deleted and the last

colunui with the one to be deleted , before applying the updating formula.

The general algorithm proceeds as follows :

ALG- 4 :  GRA V1ENT P R OJECT i ON AL G OR i TH M

0. I aJ_4 zat_ ion

Let y
0 
be any feasible solution and set k ~ 0. Develop A and (A

This inverse may be developed by beginn ing •~~~~ 1• . (~ 
S~V~) 1 and applying (16)

successively.

1. ~~~~~~~~ P J C~~~ t<V C~~L

Set d 
~
- —(I — A (AA ”)~~ A)Ag(y~ ) .

2 .  L-~ne S~ ttch
*If d = 0, go to 4, otherwise , let ~ denote the optimum of

mm C~ (Y~ + ad) : ~ 
~~

- ‘ k + ~d < u}.
ct > O

Set

3. C~~c~ &~iid~&ig Con ~ ifl~tV~S

For each constraint from (3) which is binding and is not accounted for

in A , appen d a r ow to A and update (A A ’) ’ using (16)- Go to 1.

4. Checiz ~~ Te un t.a~t~on

Set 6 ~- — (A A ) ~~ ~ Vg(y). Let Jo ~~- {j : > 0 and row j of A corres-

ponds to a variable at zero}. Let 
~u 

~ ~j : 5 . < 0 and tow j of A

corresponds to a variable at upper bound ). If J
0 

J = 
~~, terminate

with v, op tL~ d1; otherwise , select any k c J L..i J , delete row k from
0 u

A . upc .~1t e (A A~)
1 
using (17), and po to 1.

The major disadvan tage of the above procedure for convex cost network flow

problems is that the network structure cannot be easily exploited.

L 
-24-
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However , A can easily be derived from the network structure. The

element in the ith diagonal position is the number of arcs incident

with the node represented by row i of A and for i 
~ 
j, the (i ,j)th element

is the negative of the number of arcs connecting the nodes represent ed by

rows i and j. However we know of no way to develop (A A )~~ using only

graphical operations. Also note that Ae
3 wi l l  always consist of the

sth column of A with additional zeroes appended at the bottom .

—25—
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3.5 Simplex Based Methods

There are two simplex type methods (the convex simplex method of

Zangwill [48] and the reduced gradient method of Wolfe [46]) which may be used

to solve convex cost network flow problems . Both techniques may be viewed

as generalizations of the linear simplex method. They adhere to the simplex

strategy of partitioning the variables into basic and rionbasic sets, but

they differ from the linear simp lex method in that the nonbasic variables

are allowed to assume value s other than their upper and lower bounds. As

wi th the l inear simp lex me thod , the convex s implex method al lows a sing le

nonbasic to change at each iteration while any number of nonbasics may change

with the reduced gradient method .

Suppose we partition Ax = r into [B ~NJx = r where B is a basis. Like-

wise , partition x into [x~~ x
N
] and u into [u~~ u

Nj. Then (1) — (3) may

be stated as follows :

B Nmm g([x x

B —1 —
~~ Ns.t. x = B r — B Nx

B B
0<  x < U

N NO < x < u .

After substituting for we obtain

mm f(X
N
)

s.t. 0 < B 1r — B lNxN <

N0<  x < U ,

where f ( x N ) = g((B~~ r 
— B 1Nx N x N ) ) .  By mak ing an analogous p a r t i t i o n i n g  of

‘g, i .e. T g (x) a [Vg B (x) ~7g N (x) ] ,  we obtain

~f ( x M ) = ~V N ( )  - vg
B (x ) B

_L
N ( 18)

—2 6—
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Hence , 7 f ( x N )d I J d I is the directional derivative in nonbasic space. For

the convex simplex method , d is always a vector with one nonzero entry which

is either 1 or — 1. The components of ( 18) play the role of the reduced costs

in the linear simplex method . Given the direction of change (i.e. the non—

basic variable to change) a one dimensional search is requir ed to determine

the magnitude of the change. An actual simplex pivot is performed only if

the resulting change forces one of the basic variables to zero or upper bound.

An illustration of the convex simplex method is given in Figure 6 .

Figur e 4 About Here

Recall that the graph associated with (1) — (3) is defined by the node set

V and the arc set E. Following the notation of Johnson [25] a 44if lp !.2 p~VtJL

in [V I E I is a sequence of alternating nodes and connectin g edges such that  no

node (or arc) is repeated. The direction of the arcs is unimportant in de-

finIng a simple path and both 1, (i ,j), (j,k), k and I , (j,j), j, (j,k ) ,  k

are simple paths connecting nodes i and k. A cycLe is a simple path together

with an arc join ing the beginning node and ending node of the path . A

conne~a~te.d giw.p h is a collection of nodes and arcs having at least one simple

path between every pair of nodes, and a tree is connected graph with no cycles .

Since A has rank N — 1, we add an artificial variable to some row (node) ,

say row L , to obtain the fo11owin~ system , V
A x + e

Z
c l = r , ( 19)

where e
Z is a vector with a 1 in the 

~th position and zeroes elsewhere. The

L 

variable a. does not appear in the obj ective functIon (1) and the upper bound

— 27—
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for a is set t,) zero. Let B be any basis of (19). Clearly a appe .1r~ in every

such basis . Then the subgraph generated by B , called F
B~ 

consis ts of all

vertices of V and arcs corresponding to columns of (19) in B. The artificial

variable may be thought of as an arc incident to a single node , i.e., node ~~.

It is well—known that F
B is a tree , if and only if B is a basis [2, 25].

Nod e ~ is called the root of the tree .

Let denote the flow in arc j. Using this terminology the convex

simplex method is now presented.

ALG-5:  CONVEX S I M P L E X  ALGOR I THM

0. ln..~t cLLza.~tLon

Let y be any feasible point and partition A into [B N].

1. Pn~c Lng

N N B -
Set c 4- Vg (y) — Vg (y)B

Any non—basic arc j having c~ > 0 and Yj 
> 0 or c~ < 0 and Yj 

< U
j 

is a

candidate for flow change. If no such arc exis ts , te rminate;  otherwise , let

~ denote the entering arc.

2. Ra~t~o Text

Suppose the entering arc has its tail at u and its head at v. The ratio

test requires that one determine the orientation of the arcs on the simple

path from u to v in FB . Let R+ denote the set of arcs in this path f r om

u to v that are traversed in normal direction (i.e., tail to head) and

let R denote the set of arcs in this path traversed in reverse direction.

Then the maximum change in X,~ Is given by

—28—
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m m  (u . — z~ ) 1  u~ — , if c~ < 0
main 

icR J
~~ 

.*-.

(mm ~ ~ mm — ‘c1
) ,  ~~~ if c~ > 0.

min / - +
JCR jc R

If ~ — 0, go to 5.

3. L~n~ S~~~vtch

Define the direction vector as follows:

if arc j is in

1, if arc j is in R ,
d ÷ (

for j  ~~~~~~~~,

otherwise.

Let Ct” denote the solution to the following

fg (y + nd~~, if c~ < 0
)

fg(y ÷ad~~,~~~~c~~>o .
-4 < c t < 0  L

4. Up da.~~ FLoW6

*

If ~a*
l < 

~~~, return to step 1.

If c~ < 0 and ~ = u~ — ~~ or if c~ > 0 and 2~. = )t~ , go to 1.

5~ Pivo t Required?

Some basic variab le is either at 0 or upper bound . Perform a pivot

entering x~ in place of one of these bas ic variables and go to 1.

—29—
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Specialization of the pricing and line search operations for the convex

simplex method have been developed in [21]. Computational experience using

this approach may be found in [9, 36, 42].

Using the same terminology the reduced gradient method is now presented.

ALG-6: REVUCE V GRJ& VI EN T ALGORITHM

0. In aL~za~tLon

Let y be any feasible point and partition A into [B NJ . Renumber the

variables such that y = 1~
B ~N3 and ~

B 
[y
1
,... ,y J  and ~N = 

~~~~~~~~~~

Choose a termination parameter c > 0.

1. Ca UL&z.te Redwaed G~ta J ien~t and V~ tecLion In Wonba4J.~c Spac e

.+. ~g
B
~y)~~~~i - vg

N (y)

if 0 < y
1 

<

N N, ifc . < O an d y.
4-

c~ , if c~ > 0 and y .  = 0

0, otherwise

U Id~ .~l < c , j  = l,.., -. ,n , terminate.

2. CaL~.uZa.te. Vi c t-Lon In  &L6~ c Space

Set d
1 

-4- 0, j = 1,.. .,m. Let arc j be denoted by (t
1
, h

1
). Let R~

denote the set of arcs in the path from t
1 

to h
1 
in FB that are traversed

in normal direction and let R~ denote the remaining arcs in this path .

a. [Initialization ] k - ma + 1.

b. [Cycle Trace Required?] If dk 0, go to d. -

—30—



c. [Update Direction] d
1 

d
1 

— c.~ for all j

d
1 ~~

d
1 

+ c~ for all j C R.~.

d. (Check For Termination] If k m + n , go to 3; otherwise ,

k k + 1 and go to

3. Ra..t Lo Tc~~

Ct
1 4- [ mm 

[
~j 

- 

~
11 , mm [~1 1 ~~j — l,...,m 

~ 
d~>o~ d~ J d .<0 L~iJJ

If — 0, go to 6.

Ct
2 

rn~~~~ 
[ mm 
[
~j 

- 
main

j  — ma + l,...,m + a d .>0 L d
1 J d

1
<0 L~i

CL
3 

-~- main [ct.~, CL
2

] ,

4. LLne. SeLvtc.h
*Let ~ solve the problem

~ 
g(y+ctd).

5. F!~w Upda.te
* *y 4 - y + C t d .  I f n  < C t11 return to l.

6. P.Lvot

Some basic variable is at zero or upper bound. Perform a pivot letting

some ttonbasic variable having d + k ~ 0 enter the basis in place of

some basic variable at zero or upper bound and go to 1.

—31—
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Computational experience with both the convex simplex method and

reduced gradient method may be found in (42). In addition , mixed

methods combining bo th techni ques have also been suggested in (42).

L T.~ 



REFERENCES

1. Abdulaal, M., and L. 3. LeBlanc, “Multimodal Network Equilibrium”, Tech-

nical Report 77013, Department of Industrial Engineering and Operations

Research, Southern Methodis t University, (1977).

2. Bazaraa , M. S . ,  and J. J. Jarvis, Linear Programming and Network Flows,

John Wiley and Sons , New York , New York , (1977) .

3. Bazaraa, N. S.,, and C. M. Shetty, Nonlinear Programming, Published by

Georgia Institute of Technology , Atlanta , Georgia , (1977) .

4. Beale , E. N. L . ,  “An Algorithm for Solving the Transportation Problem

When the Shipping Cost Over Each. Route is Convex”, Naval Research.

Logistics Quarterly, 6, 1, 43—56, (1959).

5. Beltrami, E. J., An Algorithm Approach to Nonlinear Analysis and

Optimization, page 134, Academic Press , New York , C1970) .

t~. Bissehop , J., and A. Meeraus , “Matrix Aug.nentation and Partitioning

in the Updating of the Basis Inverse”, Mathematical Programming,,

13, 3, 241—254 , (1977).

7. Charnes, A., and W. W. Cooper , “Nonlinear Network Flows and Convex

Prograana.ing Over Incidence Matrices ” , Naval Research. Logistics Quarterly ,

5 , 3, 23 1—240 , (1958) .

8. Cb.arnes , A., and W. W. Cooper , “Multicopy Tra f f ic  Network Models ” , pages

85—96 , Theory of Traff ic  Plow, Edited by R. Herman, Elsevier Publishing

Co.,  ( 1961) .

9. Collins , N . ,  L. Cooper , R. Helgason , J. Kenziington , and L. LeBlanc ,

“Solving the Pipe Network Analysis Problem Using Optimization Techniques”,

(forthcoming in Management Science).

—33—



10. Cooper , L., and J. Kennington , “Steady—State Analysis of Nonlinear Resis-

tive Electrical Networks Using Optimization Techniques ”, Technical Report

IEOR 77012, Department of Industrial Engineering and Operations Research ,

Southern Methodist University , (1977).

11. Cooper , L., and L. J. LeBlanc, “Stochastic Transportation Problems and

Other Network Related Convex Problems ” , Naval Research Logistics Quarterly,

24 , 2, 327—336, (1977).

12. Cross , H., “Analysis of Flow in Networks of Conduits or Conductors”,

Engineering Experiment Station Bulletin No. 286, The University of

Illinois, (1936).

13. Dafermos, S. C., “An Extended Traff ic  Assignmen t Model With App lications

to Two—Way Traffic ” , Transportation Science, 5 , 4 , 366—389 , (1971) .

14. Dafermos , S. C . ,  “The Tra f f ic  Assignment Problem for  Multic lass—User

Transportation Networks”, Transportation Science, 6, 1, 73—87, (1971).

15. Dantzig, G. B., “Linear Programming Under Uncertainty”, Management Science,

1, 197—206, (1955).

16. Dennis, J. B., Mathematical Progra ing and Electrical Networks, Job-n

Wiley and Sons, Inc., New York, (1959).

17. Florian , M. ,  “An Improved Linear Approximation Algorithm for  the Network

Equilibrium (Packet Switching) Problem”, Technical Report , Centre de

Recher che sur les Transpor ts , Universit~ de Montreal, (1977).

18. Florian , N . ,  S. Ngu yen , and F. Soumis , “Two Methods for  Accelerating

an Equilibr ium Tra f f i c  Assignment Algorithm” , Technical Report 1/251 ,

Departement d ’informatique, University of Montreal, Montreal, Queb ec,

(1977).

19. Frank , M . ,  and P. Wolfe , “An Algorithm for Quadratic Programming”,

Naval Research Logistics Quarterly, 3, .1, 95—110 , (1956).

—34—

V V



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~---

20. Hall, H. A., “Hydraulic Network Analysis Using (Generalized) Geometric

Progr~~~ing ”, Networks, 6, 105—130, (1976).

21. Helgason, R. V., and 3. L. Kan.nington, “An Efficient Specialization

of the Convex Simplex Method for Nonlinear Network Flow Problems”,

Technical Report IEOR 77017, Department of Industrial Engineering and

Operations Research , Southern Methodist University , (.1977) .

22. Holloway , C. A., “An Extension of the Frank and Wolfe Method of Feasibl e

Directions”, Mathematical Progr~~~ing, 6, 14—27, (1974).

23. Ru, T. C., “Minimum—Cost Flows in Convex—Cost Networks”, Naval Research

Logistics Quarterly, 13, 1, 1—9 , (1966).

24. Jewell, W. S., ~
IModels for Traffic Assignment”, Transportation Research,

1, 31—46, (1967).

25. Johnson , E. L . ,  “Progr m~r~g in Networks and Graphs”, Operations Research

Center Report No. 65.-i, University of California , Berkeley , (1965).

26. Jorgensen, N. 0., “Some Aspects of the Urban Traffic Assignment Problem”,

Institute of Transportation and Traffic Engineering Graduate Report ,

University of California, Berkeley , (1963) .

27. Klein, N., “A Primal Method for Minimal Cost Flows With Applications

to the Assignment and Transportation Problems”, Management Science,

14, 3, 205—220 , (1967) .

28. Kreyszig, E.,  Advanced Engineering Mathematics, page 305 , John Wiley ,

New York , (1964).

29. Lasdon , L. S., Optimization Theory for Large Systems, MacMillan Co., New

York , (1972).

30. LeBlanc, L., E. Morlok, and W. Pierskalla, “An Efficient Approach to

Solving the Road Network Equilibrium Traffic Assignment Problem ”,

Transportation Research, , 309—318, (1~75).

— 35—

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ - 
V

31. LeBlanc , L. J., and L. Cooper , “The Transportation—Production Problem”,

Transportation Science, 8, 4, 344—354 , (1974) .

32. LeBlanc , L. J . ,  N. Abdu laal , and R. Helgason , “On the Improved Rate of

Convergence of the Frank—Wolfe Algorithm for Large Scale Convex Network

Problems ” , Presented at the National Meeting of ORSA/TINS in Atlanta ,

(1977).

33. Luenberger , D. G., Introduction to Linear and Nonlinear Programmin g,

Addison—Wesley , Reading, Mass.,  (1973) .

34. Menon , V. V . ,  “The Min imal Cost Flow Problem With Convex Costs ” , Naval

Research Logistics Quarterly, 12, 2, 163—172, (1965).

35. Nguyen , S., “A Mathematical Programming Approach to Equilibrium Methods

of Traffic Assignment With Fixed Demands”, Technical Report, Cen tre de

Recherche sur les Transports , Universit~ de Montreal, (1973).

36. Nguyen, S., “An Algorithm for the Traffic Assignment Problem”,

Transportation Science, 8, 203—216, (1974) .

37. Roberts , A. W., and D. E. Varberg, Convex Functions, Academic Press ,

New York, New York, (1973).

38. Rosen, 3., “The Gradient Projection Method for Nonlinear Programming:

I. Linear Constraints”, J. Soc. Indus t. Appl. Math., 8, 181—217 , ( 1960) .

39. Rosenthal, R. E., “Scheduling Reservoir Releases for Maximum Hydropower

Benefit by Nonlinear Programming on a Network” , Technical Report ,

Management Science Program , University of Tennessee, Kno,cville, (1977).

40. Sharp , 3. F . ,  3. C. Sny der , and J. H. Greene , “A Decomposition Algor ithm

for Solving the Multifacility Production—Transportation Problem with

Nonlinear Production Costs”, Econometrica, 1~ , 490—506, (1970).

41. Simmons , D. ~-t. , Nonlinear Programming for Opt3rations Research. Prentice—

-iill , Eng lewood Cl if f s , N. J., (1975).

—36—

V - - - -~~~~~ -~~~~~~~~~



-... Tjian , T. Y., and ‘ . I. Zangwill, “Analysis and Cc~parison of the

Reduced Gradient and the Convex Simplex Method for Convex PrOgramming”,

Working Paper No. 273, Center for Research in Management Science, Uni-

versity of California, Berkeley, (1969).

43. Tomlin, 3. A., “A Mathematical Programming Model for the Combined

Distribution—Assignment of Traffic”, Transportation Science, 5, 2,

122—140, (1971).

44. Wardrop , J. C., “Some Theoretical Aspects of Road Traffic Research”,

Proc. Inst. Civ. Eng., 1, Part III, 325—378, (1952).

45. Weintraub , A., “Primal Algorithm to Solve Network Flow Problems With.

Convex Costs”, Management Science, 21, 1, 87—97, (1974).

46. Wolfe, P., “Methods of Nonlinear Progra~~ing”, pages 99—130 of Nonlinear

Prqgramming, J. Abadie Editor , North Holland, Amsterdam , (1967).

47. Wolfe, P., “Convergence Theory in Nonlinear Programming”, Integer and

Nonlinear Programming, Edited by J. Abadie, North Holland , Amsterdam ,

(1970).

48. Zangwill, -
~~. I., “The Convex Simplex Method” , Management Science, 14,

3, 221— 238, (1967).

49. Zangwill, W. I., Nonlinear PrOgramming: A Unified Approach, Prentice—

aall, Inc., Englewood Cliffs, N. 3., (1969).

50. Zoutendij k, G., Methods of Feasible Directions, Elsevier Publishing

Company , Amsterdam , (1960).

—3 7—

_ _ _ _ _ _ _ _  -~~~~~~~~~ -~~~~~~~~~~~--~~~~~ -- -~~~~~~~~~



_ _  - ~~~~~~~~ ~~ V~ V ~~~~~~~~~

V .
•V

~~

V

~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/ / 

-

/ 

-
/

. “7
~~ N

~~~~~~~~~~~~~~~~~ A

-~ ~~~~- 
_ _ _ _ _ _ _ _

Figure 1. Illustration of Zigzagging Phenomenon
of Frank—Wolfe Method.
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Figure 2. Illustration of Frank—Wolfe Method with PARTAN .
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